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Abstract— This work proposes a numerical approach to the
distributed modeling of electrochemical and thermal dynamics
of Li-Ion batteries. The adopted approach enables an easy
and scalable coupling of the classical pseudo 2D model with
a spatially distributed thermal model. The partial differential
equations are integrated using a finite difference method that
gives rise to a set of Differential Algebraic Equations. The
algebraic equations are dealt with a numerical approach based
on closed-loop regulation of the voltage. This maintains the
impedance causality of the battery model allowing for an easier
integration in available simulation tools. This also enables to
scale the approach at the battery level. Extensive simulations
prove that proposed implementation can describe both the
spatial features of Li-ion cells.

I. INTRODUCTION

Li-ion batteries are the preferred choice for demanding
applications from electric mobility to personal devices. They
offer excellent energy and power density. These advantages
come however at the cost of the need of advanced Battery
Management Systems (BMS) [1].

BMSs continuously monitor the cells current, voltage,
state of charge and temperature and make sure that they
are within safe limits. In particular, thermal management
of the cell is extremely important. If the cell temperature
exceeds its maximum limit, a thermal runaway may happen
that could result in a explosion [2]. Even without considering
such extreme cases, the cell temperature has an impact on
its degradation and ageing.

Current BMSs typically measure the surface temperature
of the cells and the one of the cooling fluid [3], [4]. However,
the temperature difference between the core and the surface
of a Li-ion cell can reach high values [5]. With only the
surface cell temperature available, BMSs need to adopt
extremely conservative thermal management strategies that
limit the performance of the cell. An accurate estimation
of the cell temperature and its distribution could therefore
improve safety and performance. In turns, such an accurate
estimation requires accurate temperature models.

Over the years a number of thermal models have been
developed for Li-ion cells [6], ranging from simple black-
box models to extremely accurate CFD models. The available
approaches can be classified in black-box, gray-box and
white-box models. Black box methods describe the behavior
of the cell without considering the physics phenomena that
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Fig. 1.

Layout of a cylindrical Li-ion cell

determine the temperature. They tend to be simple and
efficient, but lacks accuracy especially when used outside
the conditions for which they have been identified. Gray-
box models [7], [8] are usually based on electro-equivalent
models that describe the cell electrical and thermal dynamics
as a network of electrical elements (resistors, capacitors,
voltage sources). They offer a good trade off between
computational costs and accuracy, but they are unable to
describe the temperature gradients inside the cell. Finally
white-box models or electrochemical models are the most
accurate. Among the available electrochemical models, the
pseudo 2D model is now accepted as the standard one.
In its original formulation [9], it does not account for the
thermal dynamics; but in later works different approaches
have been adopted. A family of approaches uses lumped
thermal models, [5] develops a lumped-parameter thermal
model. In [10], a reduced order model is obtained thanks
to a polynomial approximation of the radial temperature
distribution. This approach is based on the hypothesis that
the heat generation is uniform. This hypothesis breaks under
high discharge rate [11]. The above models are however not
bidirectionally coupled, in the sense that the electrochemical
process influence the heat generation, but the cell temperature
does not impact the electrochemical reactions. This drawback
is overcome in [12] and [13] where the classical pseudo
2D Electrochemical model of a cylindrical cell is coupled
with a lumped thermal model, making the physiochemical
properties of the cell temperature dependent. However, as
explained before, a lumped thermal model, in certain op-
erating conditions, may not be enough. Finally, there are
works where the coupled electrochemical thermal model is
solved through computational fluid dynamics, as in [14], or
finite element solvers as in [15]. As affirmed in [16], these



methods imply extensive computational resources, so they
are not suited for applications.

This work proposes a control-oriented bidirectional cou-
pled electrochemical thermal model for cylindrical Li-Ion
cells (as the one depicted in 1).

The partial differential equation that arise from the mass,
charge and energy conservation are discretized using a Finite
Difference Method (FDM) applied to both electrochemical
and the thermal dynamics. Thus, the model describes the spa-
tial nature of both the electrochemical reactions and the heat
generation. The spatial discretization of the electrochemical
and the thermal models generates a set of Differential Al-
gebraic Equation (DAE) which represents a finite number
of impedances in parallel. This implies that the impedance
causality that characterizes the P2D model is lost. In order
to preserve this convenient feature (that is the basis of many
estimation and control approaches in the literature), a closed-
loop regulation of the voltage is developed.

Thus, the paper presents a numerical approach to solve
the modeling and simulation of a finite number of P2D
models in parallel accounting for their thermal coupling.
The approximate approach exploits a frequency decoupling
between the added closed-loop voltage regulation and the
electrochemical dynamics. The advantages of the approach
are multiple:

1) solving the closed-loop ODE is more computationally

efficient than solving the original algebraic equations;

2) the integration of the model in commonly available

signal-based simulation tools is easier;

3) the formulation is more easily applicable to classical

control and estimation development techniques;

4) the formulation is scalable at the battery level.

The paper structure is as follows: Section II recalls the
P2D model and discretizes it. Section III describes and
discretizes the thermal dynamics. Section IV presents the
numerical coupling approach. Section V validates the pro-
posed approach comparing a number of simulations run in
different conditions. Finally, this work takes end in Section
VL

II. ELECTROCHEMICAL MODEL

Over the years, the literature has converged on the P2D
model [9], [17], [18] as a good trade-off between complexity
and accuracy. The model considers only the diffusion dynam-
ics that take place across the battery film thickness, x, and
the diffusion dynamics inside the spherical particles, along
the radial direction r (see Figure 1).

Figure 2 summarizes the (continuous and discretized)
conservation equations with the following nomenclature:
cs is the concentration of lithium in solid phase; c. is
the concentration of Li-ions in electrolyte phase; i is the
electronic current in solid phase; i, is the ionic current in
electrolyte phase; ¢, is the potential of solid phase; ¢, is
the potential of electrolyte phase. Dy is the solid phase
diffusion coefficient; F is the Faraday’s constant; a; is the
specific interfacial area of an electrode; Dﬁf 1 is the effective
diffusion coefficient; tﬂ is the transference number of Li+

Fig. 2. Electrochemical model equations.

(assumed as a constant); ¢/ is the effective conductivity;
keff is the effective ionic conductivity, while kefo is the
effective diffusion conductivity. A few geometrical quantities
are defined as well: A is the electrode plate area; 6,,,”,,
are, respectively, the thickness of the negative and positive
electrodes and separator; L = 8, + 0, + 0 is the overall film
thickness.

The molar flux j at the surface of active material particles
is described by the Butler-Volmer kinetics equation:

TR 7L N
J —asjo[exp(RTn) eXP( RT??)] (D

where o, . represents the anodic and cathodic transfer coef-
ficients; R is the universal gas constant; T is the temperature;
Jo is the exchange current density. 1) represents the reaction
overpotential:
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The thermodynamic equilibrium potential U depends on
the surface concentration c¢s as described by [19] and not
reported here for brevity’s sake. The gradients of i; and i,
depend on j&:
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The terminal cell voltage is:

V==L 0(r=0)~ L1 ©)

where Ry is the electrode surface film resistance. The P2D
model is discretized as in [20]: the negative and positive
electrodes and the separator are divided in the x direction
in Ny p elements and spacing Ax; s »; each spherical active
material particle is divided, along its radius, in N, sectors
spaced Ar. This results in a total of (N, + 1)(N,+Np)+ Ny
Ordinary Differential Equations (ODEs), and 5(N, +N,) +
2N — 3 non-linear algebraic constraints.

III. THERMAL MODEL

The derivation of the thermal model is based on the
fundamental hypothesis that the temperature gradient along
the axial direction y is negligible ( [11], [21]); as a con-
sequence, the temperature dynamics are described by a 1D
heat conduction in a cylinder:
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where 7., is the environment temperature, considered con-
stant, k; is the thermal conductivity, p is the density, & is
the convection heat transfer coefficient, ¢, is the specific
heat capacity, Q is the volumetric heat generation rate, r¢
and R are the radial direction and the radius of the cylinder,
respectively. Considering an heterogeneous cylinder, the heat
capacity C,, is calculated from the corresponding component
values, as proposed in [22]:
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where subscript k stands for the phase (solid or electrolyte)
and subscript i stands for the component (n, s, p). In (9), J;
is the thickness of the i-th component and & is the volume
fraction of the k-th phase in the i-th component. Q is the
sum of three terms: the volumetric reaction heat Q;, the
volumetric ohmic heat Q,, the volumetric heat generated due
contact resistance Qy:

Q:Qj+Qo+Qf

where
L

Qj:_o

1 L f a¢s : f a‘Pe 2
_ eff [ 218 eff [ Z*e
Qo_hc/()(y (8)() i (8x>
B din(c,) 20,
ff
+h,(—3;—)(ax)dn

In the above expressions, A¢ is the height of the cylinder
and 7 is the specific current density. Note the dependency

on electrochemical variables; which determines the coupling
between the two domains (thermal and electrochemical).

In analogy with the technique shown for the electrochem-
ical model, the above PDEs are discretized with a finite
difference method along the radial direction. The cell is thus
is divided in a finite number of elements (V).

Two discretization approaches are considered: a constant
radius and a constant-volume discretization. The constant
radius approach divides the radius of the cell in with a
constant step Ar¢ = ]If,—z; the constant volume approach divides
the cell in N, subcells with the same volume. For brevity’s
sake, the following results refer to the constant-volume
discretization only.

According to the FDM, (7) becomes:
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where T, r,, Q, and V (k) are respectively the temperature,
the radius and the heat generation rate of the z-th element.
The term Ar, is defined as:
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and the boundary conditions (8) become respectively:
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IV. COUPLED ELECTROCHEMICAL THERMAL MODEL

The previous sections show that the coupling between
the electrochemical and thermal models is bidirectional,
the thermal model depends on the heat generated by the
chemical reaction; and the chemical reaction rates depend
on the local temperature. In particular, the dependency of
the electrochemical parameters on the temperature is well
described by the Arrhenius equation:
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where W is the generic parameter taken into account, W, is
the value of the parameter at the reference temperature 7,y =
25°C, R is the universal gas constant, E,t, is the activation
energy of the physiochemical property. More specifically, the
parameters that are considered temperature dependent are:
the exchange current density ip, the diffusion coefficient in
the solid phase Dy, the diffusion coefficient in the electrolyte
phase D, and the electrolyte ionic conductivity K.

According to the FDM method described above, the Li-
ion cell can be seen as set of N, subcells in parallel, i.e.
exhibiting the same output voltage, where each subcell is
described by an electrochemical model and characterized by
its own temperature (see Figure 1).

Thanks to the electrochemical model, it is possible to
properly model the intercalation dynamics, as described in




Section II, and to calculate the heat generation rate Q, of the
z-th subcell as:
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The term IAZ represents the input current of the z-th subcell.
If the impedance of all the subcells is the same, IAZ is simply:
_ Az
=4
where I and A; are respectively the external current and the
lateral surface area of the cell, while A;; = 27r{h¢ is the
lateral surface area of the z-th subcell. As the impedance of
the subcells varies (due for example to temperature gradient
in the cell) the current in each subcell may vary so that the
voltage across the terminals of each subcell is the same (to
guarantee the parallel nature of the connection).

The model 1is thus described by a set of
N:[(N,+1)(N,+N,)+N,] ODEs and a set of N, — 1
constraint-type-equations, which represent the fact that the
N, subcells are in parallel:
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The coupling of the impedance-like causality of the P2D
model with these constraints is not trivial. In other words,
the discretization needed to account for the temperature
gradient is not compatible with the impedance causality of
the P2D model. Instead of changing the P2D model causality
or explicitly accounting to the algebraic constraint, here a
numerical approach is introduced. Each subcell is seen as a
temperature and time dependent system that has, as input,
the current density IAZ and, as output, the voltage V,. A set
of virtual controllers then distributes the current among the
several subcell to guarantee that their voltage is maintained
equal. Figure 3 graphically depicts the idea. The error e,
defined as the difference between the voltage V1| and V., is
the input of the regulator R,, while its output is the control
action u;. The control action u; changes the magnitude of
the inputs IZ+1 and IZ, according to the error e, in order
to numerically force the Kirchhoff voltage equality. In other
words, the proposed approach replaces (11) with a set of
Nc—1 regulators that determine the total current distributions
among the e N, impedences in parallel. The generic regulator
R, is a dynamical system described by N, ODEs. This leads
to a total of N, [(N,+ 1)(N,+N,)+N;] +N, (No —1)+ N,
ODE:s.
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Fig. 3. Control-oriented coupled electrochemical thermal model layout.

The regulators are basically approximating the Kirchhoff
law, as such the tuning of the regulators is particularly
important. The regulators need to be tuned so that the e;’s
converge to zero with a dynamic faster than the electrochem-
ical dynamics of interest. A trade-off arises: the faster the
error dynamics is the stiffer and thus more computationally
demanding the model is. This trade-off can also be employed
as a calibration parameter that influence the simulation time.

Figure 4 plots the error dynamics during a 10C pulse
discharge test with a starting temperature of 7., = 25°C.
From figure it is possible to see how the errors’ magnitude
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Fig. 4. Pulse train simulation of the coupled electrochemical thermal model;
simulation time

is lower than 5-107* V.

V. SIMULATION RESULTS

This section investigates the property of the proposed
approach under realistic conditions. The model describes
the 6Ah cell identified in [10], [12]. The current input
I is calculated as the current requested in an HEV to a
single Li-ion cell to perform a series of 4 US06 driving



cycles, for a total simulated time of 2403 s, where the
mean and the maximum current are equal to 1 C and 25 C,
respectively. The subcells’ temperatures are initialized at the
environment’s one T, = 25°C. The heat transfer coefficient
h is set to the value of 60%.

In order to characterize the temperature behavior of the
Li-ion cell, the following quantities are defined:

« The average temperature Tp,:

Ne
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where V represents the volume of the z-th subcell.
e The index AT, that summarizes the overall internal
temperature difference:

AT =T, —Ty,.

o The index 0T, that summarizes the difference between
the cell bulk temperature and the environment:

OT = Tyuix — T

o The index u, that quantifies the importance of consid-
ering the internal temperature gradient of the cell:

AT T —1j,
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Figure 5 plots the values of the indexes at the end of the
considered driving cycle, for different values of N,, and the

ratio ¥ between the simulation time and the simulated time.
From figure, the following comments are due:
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Fig. 5. Sensitivity analysis with respect to N,

« The values of the three indexes tend to converge as N,
increases.

o The computation time, while increasing more than lin-
early, can be kept at a faster than real time ratio. In
particular a N, = 6 is selected.

o During the driving cycle, the internal temperature dis-
tribution is not negligible; this justifies the need for a
coupled model.
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Fig. 6. Comparison of the concentrations dynamics.
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Fig. 7. Sensitivity analysis with respect to A.

Figure 6 provides a further demonstration of the impor-
tance of the coupled dynamics. It plots the comparison of the
concentration dynamics in the outer element of the particle
in the first element of the negative electrode (top subplot)
and in the last element of the positive electrode (bottom
subplot) for the case lumped thermal model (N, =1 - dashed
line) and of the distributed model (N, = 6 - solid line); the
darkest solid line refers to the inner subcell, while the lighter
solid line refers to the outer subcell. These results show
that the temperature considerably affects the intercalation
dynamics, therefore, if the internal temperature gradient is
not negligible, the lithium concentration is not uniform along
the radial direction 7°. As shown in Figure 6, the presented
model provides N, lithium concentrations with their related
dynamics, that better describe the behavior of the cell with
respect to the case of N, = 1.

Finally, Figure 7 shows the results of a sensitivity analysis
with respect to the heat transfer coefficient . As expected,
increasing h, the cell is exchanging heat (at the surface) more
easily with the environment, so the temperature difference
between the core and the surface of the cell increases,
while the difference between the bulk temperature and the
environment’s one decreases. The index u increases as the



heat exchange coefficient grows. Hence, the greater is u,
the more important is to consider the internal temperature
gradient of the cell.

VI. CONCLUSION

This work presents a numerical approach to couple the
electrochemical and the thermal models of a cylindrical Li-
ion cell. The approach is based on an approximation of the
Kirchhoff law through a bank of voltage controllers that
ensure the desired dynamics at the node. This approach is
more flexible and easier to use than the formally correct
solution of a system of algebraic differential equation.

The proposed model is extensively tested in simulation
using a realistic driving cycle showing the impact of several
parameters as well as the importance of considering the
coupled distributed nature of the dynamics.
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