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Abstract— This work proposes a numerical approach to the
distributed modeling of electrochemical and thermal dynamics
of Li-Ion batteries. The adopted approach enables an easy
and scalable coupling of the classical pseudo 2D model with
a spatially distributed thermal model. The partial differential
equations are integrated using a finite difference method that
gives rise to a set of Differential Algebraic Equations. The
algebraic equations are dealt with a numerical approach based
on closed-loop regulation of the voltage. This maintains the
impedance causality of the battery model allowing for an easier
integration in available simulation tools. This also enables to
scale the approach at the battery level. Extensive simulations
prove that proposed implementation can describe both the
spatial features of Li-ion cells.

I. INTRODUCTION

Li-ion batteries are the preferred choice for demanding

applications from electric mobility to personal devices. They

offer excellent energy and power density. These advantages

come however at the cost of the need of advanced Battery

Management Systems (BMS) [1].

BMSs continuously monitor the cells current, voltage,

state of charge and temperature and make sure that they

are within safe limits. In particular, thermal management

of the cell is extremely important. If the cell temperature

exceeds its maximum limit, a thermal runaway may happen

that could result in a explosion [2]. Even without considering

such extreme cases, the cell temperature has an impact on

its degradation and ageing.

Current BMSs typically measure the surface temperature

of the cells and the one of the cooling fluid [3], [4]. However,

the temperature difference between the core and the surface

of a Li-ion cell can reach high values [5]. With only the

surface cell temperature available, BMSs need to adopt

extremely conservative thermal management strategies that

limit the performance of the cell. An accurate estimation

of the cell temperature and its distribution could therefore

improve safety and performance. In turns, such an accurate

estimation requires accurate temperature models.

Over the years a number of thermal models have been

developed for Li-ion cells [6], ranging from simple black-

box models to extremely accurate CFD models. The available

approaches can be classified in black-box, gray-box and

white-box models. Black box methods describe the behavior

of the cell without considering the physics phenomena that
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Fig. 1. Layout of a cylindrical Li-ion cell

determine the temperature. They tend to be simple and

efficient, but lacks accuracy especially when used outside

the conditions for which they have been identified. Gray-

box models [7], [8] are usually based on electro-equivalent

models that describe the cell electrical and thermal dynamics

as a network of electrical elements (resistors, capacitors,

voltage sources). They offer a good trade off between

computational costs and accuracy, but they are unable to

describe the temperature gradients inside the cell. Finally

white-box models or electrochemical models are the most

accurate. Among the available electrochemical models, the

pseudo 2D model is now accepted as the standard one.

In its original formulation [9], it does not account for the

thermal dynamics; but in later works different approaches

have been adopted. A family of approaches uses lumped

thermal models, [5] develops a lumped-parameter thermal

model. In [10], a reduced order model is obtained thanks

to a polynomial approximation of the radial temperature

distribution. This approach is based on the hypothesis that

the heat generation is uniform. This hypothesis breaks under

high discharge rate [11]. The above models are however not

bidirectionally coupled, in the sense that the electrochemical

process influence the heat generation, but the cell temperature

does not impact the electrochemical reactions. This drawback

is overcome in [12] and [13] where the classical pseudo

2D Electrochemical model of a cylindrical cell is coupled

with a lumped thermal model, making the physiochemical

properties of the cell temperature dependent. However, as

explained before, a lumped thermal model, in certain op-

erating conditions, may not be enough. Finally, there are

works where the coupled electrochemical thermal model is

solved through computational fluid dynamics, as in [14], or

finite element solvers as in [15]. As affirmed in [16], these



methods imply extensive computational resources, so they

are not suited for applications.

This work proposes a control-oriented bidirectional cou-

pled electrochemical thermal model for cylindrical Li-Ion

cells (as the one depicted in 1).

The partial differential equation that arise from the mass,

charge and energy conservation are discretized using a Finite

Difference Method (FDM) applied to both electrochemical

and the thermal dynamics. Thus, the model describes the spa-

tial nature of both the electrochemical reactions and the heat

generation. The spatial discretization of the electrochemical

and the thermal models generates a set of Differential Al-

gebraic Equation (DAE) which represents a finite number

of impedances in parallel. This implies that the impedance

causality that characterizes the P2D model is lost. In order

to preserve this convenient feature (that is the basis of many

estimation and control approaches in the literature), a closed-

loop regulation of the voltage is developed.

Thus, the paper presents a numerical approach to solve

the modeling and simulation of a finite number of P2D

models in parallel accounting for their thermal coupling.

The approximate approach exploits a frequency decoupling

between the added closed-loop voltage regulation and the

electrochemical dynamics. The advantages of the approach

are multiple:

1) solving the closed-loop ODE is more computationally

efficient than solving the original algebraic equations;

2) the integration of the model in commonly available

signal-based simulation tools is easier;

3) the formulation is more easily applicable to classical

control and estimation development techniques;

4) the formulation is scalable at the battery level.

The paper structure is as follows: Section II recalls the

P2D model and discretizes it. Section III describes and

discretizes the thermal dynamics. Section IV presents the

numerical coupling approach. Section V validates the pro-

posed approach comparing a number of simulations run in

different conditions. Finally, this work takes end in Section

VI.

II. ELECTROCHEMICAL MODEL

Over the years, the literature has converged on the P2D

model [9], [17], [18] as a good trade-off between complexity

and accuracy. The model considers only the diffusion dynam-

ics that take place across the battery film thickness, x, and

the diffusion dynamics inside the spherical particles, along

the radial direction r (see Figure 1).

Figure 2 summarizes the (continuous and discretized)

conservation equations with the following nomenclature:

cs is the concentration of lithium in solid phase; ce is

the concentration of Li-ions in electrolyte phase; is is the

electronic current in solid phase; ie is the ionic current in

electrolyte phase; φs is the potential of solid phase; φe is

the potential of electrolyte phase. Ds is the solid phase

diffusion coefficient; F is the Faraday’s constant; as is the

specific interfacial area of an electrode; D
e f f
e is the effective

diffusion coefficient; t0
+ is the transference number of Li+

Fig. 2. Electrochemical model equations.

(assumed as a constant); σ e f f is the effective conductivity;

ke f f is the effective ionic conductivity, while k
e f f
D is the

effective diffusion conductivity. A few geometrical quantities

are defined as well: A is the electrode plate area; δn,s,p,

are, respectively, the thickness of the negative and positive

electrodes and separator; L = δn +δs+δp is the overall film

thickness.

The molar flux jLi at the surface of active material particles

is described by the Butler-Volmer kinetics equation:

jLi = as j0

[
exp

(
αaF

RT
η

)
− exp

(
−

αcF

RT
η

)]
(1)

where αa,c represents the anodic and cathodic transfer coef-

ficients; R is the universal gas constant; T is the temperature;

j0 is the exchange current density. η represents the reaction

overpotential:

η = φs −φe −U(cse). (2)

The thermodynamic equilibrium potential U depends on

the surface concentration cse as described by [19] and not

reported here for brevity’s sake. The gradients of is and ie
depend on jLi:

∂ is

∂x
=− jLi ∂ ie

∂x
= jLi;

satisfying the following constraints within the separator x ∈

[δn,δn + δs]:

∂ is

∂x
(x) =

∂ ie

∂x
(x) = 0 (3)

is(x) = 0 (4)

ie(x) =−ke f f ∂φe

∂x
− k

e f f
D

∂ ln(ce)

∂x
=

I

A
. (5)



The terminal cell voltage is:

V = φs(x = L)−φs(x = 0)−
R f

A
I (6)

where R f is the electrode surface film resistance. The P2D

model is discretized as in [20]: the negative and positive

electrodes and the separator are divided in the x direction

in Nn,s,p elements and spacing ∆xn,s,p; each spherical active

material particle is divided, along its radius, in Nr sectors

spaced ∆r. This results in a total of (Nr + 1)(Nn +Np)+Ns

Ordinary Differential Equations (ODEs), and 5(Nn +Np)+
2Ns − 3 non-linear algebraic constraints.

III. THERMAL MODEL

The derivation of the thermal model is based on the

fundamental hypothesis that the temperature gradient along

the axial direction y is negligible ( [11], [21]); as a con-

sequence, the temperature dynamics are described by a 1D

heat conduction in a cylinder:

ρcp
∂T

∂ t
= kt

∂ 2T

∂ 2rc
+

kt

rc

∂T

∂ rc
+Q (7)

with boundary conditions:

∂T

∂ rc

∣∣∣∣
rc=0

= 0,
∂T

∂ rc

∣∣∣∣
rc=Rc

=−
h

kt

(T −T∞) (8)

where T∞ is the environment temperature, considered con-

stant, kt is the thermal conductivity, ρ is the density, h is

the convection heat transfer coefficient, cp is the specific

heat capacity, Q is the volumetric heat generation rate, rc

and Rc are the radial direction and the radius of the cylinder,

respectively. Considering an heterogeneous cylinder, the heat

capacity Cp is calculated from the corresponding component

values, as proposed in [22]:

Cp = ρcp = ∑
i,k

δiεk,iρk,icp,k,i

L
(9)

where subscript k stands for the phase (solid or electrolyte)

and subscript i stands for the component (n, s, p). In (9), δi

is the thickness of the i-th component and εk is the volume

fraction of the k-th phase in the i-th component. Q is the

sum of three terms: the volumetric reaction heat Q j, the

volumetric ohmic heat Qo, the volumetric heat generated due

contact resistance Q f :

Q = Q j +Qo +Q f

where

Q j =
1

hc

∫ L

0
jLiη dx, Q f =

R f

hc
ĩ2,

Qo =
1

hc

∫ L

0
σ e f f

(
∂φs

∂x

)2

+ ke f f

(
∂φe

∂x

)2

+ k
e f f
D

(
∂ ln(ce)

∂x

)(
∂φe

∂x

)
dx.

In the above expressions, hc is the height of the cylinder

and ĩ is the specific current density. Note the dependency

on electrochemical variables; which determines the coupling

between the two domains (thermal and electrochemical).

In analogy with the technique shown for the electrochem-

ical model, the above PDEs are discretized with a finite

difference method along the radial direction. The cell is thus

is divided in a finite number of elements (Nc).

Two discretization approaches are considered: a constant

radius and a constant-volume discretization. The constant

radius approach divides the radius of the cell in with a

constant step ∆rc = Rc
Nc

; the constant volume approach divides

the cell in Nc subcells with the same volume. For brevity’s

sake, the following results refer to the constant-volume

discretization only.

According to the FDM, (7) becomes:

ρcpṪz = kt

[
Tz−1 − 2Tz+Tz+1

(∆rc
z)

2

]
+

kt

rc
z

[
Tz+1 −Tz

∆rc
z

]
+Qz (10)

where Tz, rz, Qz and V (k) are respectively the temperature,

the radius and the heat generation rate of the z-th element.

The term ∆rz is defined as:

∆rc
z = rc

z − rc
z−1

where:

rc
0 = 0, rc

Nc
= Rc

and the boundary conditions (8) become respectively:

T1 −T0 = 0,
TNc+1 −TNc

∆rc
Nc

=−
h

kt

(TNc −T∞).

IV. COUPLED ELECTROCHEMICAL THERMAL MODEL

The previous sections show that the coupling between

the electrochemical and thermal models is bidirectional,

the thermal model depends on the heat generated by the

chemical reaction; and the chemical reaction rates depend

on the local temperature. In particular, the dependency of

the electrochemical parameters on the temperature is well

described by the Arrhenius equation:

Ψ(T ) = Ψre f

[
EΨ

act

R

(
1

Tre f

−
1

T

)]

where Ψ is the generic parameter taken into account, Ψre f is

the value of the parameter at the reference temperature Tre f =
25◦C, R is the universal gas constant, EΨ

act is the activation

energy of the physiochemical property. More specifically, the

parameters that are considered temperature dependent are:

the exchange current density i0, the diffusion coefficient in

the solid phase Ds, the diffusion coefficient in the electrolyte

phase De and the electrolyte ionic conductivity K.

According to the FDM method described above, the Li-

ion cell can be seen as set of Nc subcells in parallel, i.e.

exhibiting the same output voltage, where each subcell is

described by an electrochemical model and characterized by

its own temperature (see Figure 1).

Thanks to the electrochemical model, it is possible to

properly model the intercalation dynamics, as described in



Section II, and to calculate the heat generation rate Qz of the

z-th subcell as:

Qz = Q j,z +Qo,z+Q f ,z

Q j,z =
1

hc ∑
i

jLi
i,zηi,z∆x

Qo,z =
1

hc ∑
i

[
σ e f f

(
φs,i+1,z −φs,i,z

∆x

)2

∆x

]

+
1

hc ∑
i

[
ke f f

(
φe,i+1,z −φe,i,z

∆x

)2

∆x

]

+
1

hc ∑
i

[
k

e f f
D

(
ln(ce,i+1,z)− ln(ce,i,z)

∆x

)(
φe,i+1,z −φe,i,z

∆x

)
∆x

]

Q f ,z =
R f

hcA2
z

(
Îz

)2

The term Îz represents the input current of the z-th subcell.

If the impedance of all the subcells is the same, Îz is simply:

Iz =
Al z

Al

I

where I and Al are respectively the external current and the

lateral surface area of the cell, while Al z = 2πrc
zhc is the

lateral surface area of the z-th subcell. As the impedance of

the subcells varies (due for example to temperature gradient

in the cell) the current in each subcell may vary so that the

voltage across the terminals of each subcell is the same (to

guarantee the parallel nature of the connection).

The model is thus described by a set of

Nc [(Nr + 1)(Nn +Np)+Ns] ODEs and a set of Nc − 1

constraint-type-equations, which represent the fact that the

Nc subcells are in parallel:

Vz+1 −Vz = 0 with z ∈ [1,Nc − 1] . (11)

The coupling of the impedance-like causality of the P2D

model with these constraints is not trivial. In other words,

the discretization needed to account for the temperature

gradient is not compatible with the impedance causality of

the P2D model. Instead of changing the P2D model causality

or explicitly accounting to the algebraic constraint, here a

numerical approach is introduced. Each subcell is seen as a

temperature and time dependent system that has, as input,

the current density Îz and, as output, the voltage Vz. A set

of virtual controllers then distributes the current among the

several subcell to guarantee that their voltage is maintained

equal. Figure 3 graphically depicts the idea. The error ez,

defined as the difference between the voltage Vz+1 and Vz, is

the input of the regulator Rz, while its output is the control

action uz. The control action uz changes the magnitude of

the inputs Îz+1 and Îz, according to the error ez, in order

to numerically force the Kirchhoff voltage equality. In other

words, the proposed approach replaces (11) with a set of

Nc−1 regulators that determine the total current distributions

among the e Nc impedences in parallel. The generic regulator

Rz is a dynamical system described by Nb ODEs. This leads

to a total of Nc [(Nr + 1)(Nn +Np)+Ns] +Nb (Nc − 1)+Nc

ODEs.
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Fig. 3. Control-oriented coupled electrochemical thermal model layout.

The regulators are basically approximating the Kirchhoff

law, as such the tuning of the regulators is particularly

important. The regulators need to be tuned so that the ez’s

converge to zero with a dynamic faster than the electrochem-

ical dynamics of interest. A trade-off arises: the faster the

error dynamics is the stiffer and thus more computationally

demanding the model is. This trade-off can also be employed

as a calibration parameter that influence the simulation time.

Figure 4 plots the error dynamics during a 10C pulse

discharge test with a starting temperature of T∞ = 25◦C.

From figure it is possible to see how the errors’ magnitude
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Fig. 4. Pulse train simulation of the coupled electrochemical thermal model;
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is lower than 5 ·10−4 V.

V. SIMULATION RESULTS

This section investigates the property of the proposed

approach under realistic conditions. The model describes

the 6Ah cell identified in [10], [12]. The current input

I is calculated as the current requested in an HEV to a

single Li-ion cell to perform a series of 4 US06 driving



cycles, for a total simulated time of 2403 s, where the

mean and the maximum current are equal to 1 C and 25 C,

respectively. The subcells’ temperatures are initialized at the

environment’s one T∞ = 25◦C. The heat transfer coefficient

h is set to the value of 60 W
m2K

.

In order to characterize the temperature behavior of the

Li-ion cell, the following quantities are defined:

• The average temperature Tbulk:

Tbulk =
∑

Nc
z=1 V s

z ·Tz

∑
Nc
z=1 V s

z

where V s
z represents the volume of the z-th subcell.

• The index ∆T , that summarizes the overall internal

temperature difference:

∆T = T1 −TNc .

• The index δT , that summarizes the difference between

the cell bulk temperature and the environment:

δT = Tbulk −T∞

• The index µ , that quantifies the importance of consid-

ering the internal temperature gradient of the cell:

µ =
∆T

δT
=

T1 −TNc

Tbulk −T∞
.

Figure 5 plots the values of the indexes at the end of the

considered driving cycle, for different values of Nc, and the

ratio γ between the simulation time and the simulated time.

From figure, the following comments are due:
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Fig. 5. Sensitivity analysis with respect to Nc

• The values of the three indexes tend to converge as Nc

increases.

• The computation time, while increasing more than lin-

early, can be kept at a faster than real time ratio. In

particular a Nc = 6 is selected.

• During the driving cycle, the internal temperature dis-

tribution is not negligible; this justifies the need for a

coupled model.
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Fig. 7. Sensitivity analysis with respect to h.

Figure 6 provides a further demonstration of the impor-

tance of the coupled dynamics. It plots the comparison of the

concentration dynamics in the outer element of the particle

in the first element of the negative electrode (top subplot)

and in the last element of the positive electrode (bottom

subplot) for the case lumped thermal model (Nc = 1 - dashed

line) and of the distributed model (Nc = 6 - solid line); the

darkest solid line refers to the inner subcell, while the lighter

solid line refers to the outer subcell. These results show

that the temperature considerably affects the intercalation

dynamics, therefore, if the internal temperature gradient is

not negligible, the lithium concentration is not uniform along

the radial direction rc. As shown in Figure 6, the presented

model provides Nc lithium concentrations with their related

dynamics, that better describe the behavior of the cell with

respect to the case of Nc = 1.

Finally, Figure 7 shows the results of a sensitivity analysis

with respect to the heat transfer coefficient h. As expected,

increasing h, the cell is exchanging heat (at the surface) more

easily with the environment, so the temperature difference

between the core and the surface of the cell increases,

while the difference between the bulk temperature and the

environment’s one decreases. The index µ increases as the



heat exchange coefficient grows. Hence, the greater is µ ,

the more important is to consider the internal temperature

gradient of the cell.

VI. CONCLUSION

This work presents a numerical approach to couple the

electrochemical and the thermal models of a cylindrical Li-

ion cell. The approach is based on an approximation of the

Kirchhoff law through a bank of voltage controllers that

ensure the desired dynamics at the node. This approach is

more flexible and easier to use than the formally correct

solution of a system of algebraic differential equation.

The proposed model is extensively tested in simulation

using a realistic driving cycle showing the impact of several

parameters as well as the importance of considering the

coupled distributed nature of the dynamics.
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